Achilles And The Tortoise Paradox

Salutations.

It has been a while since I have gone off on a random tangent, so here we are. Today we are going to be learning about a very old paradox which was proposed by a fifteenth century BCE Greek philosopher named Zeno

The Paradox of Achilles and the Tortoise is one of a number of theoretical discussions of movement put forward by the Greek philosopher Zeno of Elea in the 5th century BC. It begins with the great hero Achilles challenging a tortoise to a footrace. To keep things fair, he agrees to give the tortoise a head start of, say, 500m. When the race begins, Achilles unsurprisingly starts running at a speed much faster than the tortoise, so that by the time he has reached the 500m mark, the tortoise has only walked 50m further than him. But by the time Achilles has reached the 550m mark, the tortoise has walked another 5m. And by the time he has reached the 555m mark, the tortoise has walked another 0.5m, then 0.25m, then 0.125m, and so on. This process continues again and again over an infinite series of smaller and smaller distances, with the tortoise always moving forwards while Achilles always plays catch up.

Logically, this seems to prove that Achilles can never overtake the tortoise—whenever he reaches somewhere the tortoise has been, he will always have some distance still left to go no matter how small it might be. Except, of course, we know intuitively that he can overtake the tortoise. The trick here is not to think of Zeno’s Achilles Paradox in terms of distances and races, but rather as an example of how any finite value can always be divided an infinite number of times, no matter how small its divisions might become.

If you would like to learn more about the Achilles and the tortoise paradox, then I would suggest watching this video or checking out this link. It will give you a good depth of understanding about how this paradox still impacts us today.

Leave a Reply

Your email address will not be published. Required fields are marked *