Rube Goldberg was a cool guy.

in the latest Scimatics project we created Rube Goldberg machines to represent the scientific method. The scientific method consists of 6 steps: observation, question, hypothesis, analysis, conclusion. So, without further ado, here is the post.

I wasn’t here for the first couple days of this project, but as always, we started off with a mind map of what we knew already and questions we had. The next step was to perform some experiments on electricity.

After this we did some workbooks and a khan academy quiz that helped me understand how electricity works in a circuit. Then, we created individual diagrams of what our Rube Goldberg machine could look like. Here is mine:

First draft blueprint

Then, my group of Colton, Cale, and Max got to work on our final blueprint, which is a scale drawing of our machine, a digital drawing, and circuit diagrams and calculations. We also built our machine. Here is the final video:

And the final circuit and machine diagrams:

Final blueprint
Circuit Diagram

And for the revised mind map containing all my new knowledge:

Now, for the curricular competencies:

Questioning and Predicting: Demonstrate a sustained intellectual curiosity about a scientific topic or problem of personal interest

All class time is used efficiently for learning without distractions

I think that I used all my class time very well this project, seeing as I was away for most of it and still learned so much and got everything done

Reasoning and Analyzing: Estimate reasonably

Final blueprint is complete and accurate. Contains grid scale. All measurements are labeled with a high degree of accuracy. All lines are easily distinguished

My team’s final blueprint does contain a grid scale, measurements, and is very accurate

Planning and conducting: Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data

Hand built series and parallel circuits are used to good effect with efficiency in your metaphor machine. Accurate circuit diagrams are included in the final blueprint. Diagrams use proper symbols. Diagrams are neat and easy to understand. Measurements of current, voltage and resistance are included

There is one series circuit in our machine, the one that lights up the question mark, and all the circuits combine make one large parallel circuit. Their are accurate diagrams of alt eh electronics in our machine in the final blueprint, accompanied by voltage, current, and resistance measurements

Scientific Communication: Formulate physical or mental models to describe a phenomenon

A video is recorded of the complete operation of the machine and voice overs are added which explain the sequence of the scientific method as the machine progresses.

I think that our final video is emerging, because the voiceovers do not sync up, and they do not explain what is happening very well. Also, the video only utilizes one of four videos of the machine working, it much less immersive.

Thanks for reading my post! Once again, thanks to my group for helping me in this project! This project was probably my favourite Scimatics project this year, so I hope to see more like it in the future. See you in the next one.

Epidemic Exponents!

Hello, and welcome. I am back to school, and starting this year in scimatics with exponents! In the first scimatics project this year, Game of Exponent Laws, I learned how to evaluate exponents, exponent laws, and more. So without further ado, here is the post.

To kick of the project, we did a quick activity were we made up games that used one and two dice. We got into groups of four, and started working. And here are the rules we came up with:

Rollie poll-E

Assemble all the players in a circle. Decide who will roll first, and have them roll the die. If their roll is a 4, 5, or 6, add the roll to their point tally. If their roll is a 1, or 3, subtract their roll from their point tally. Point tallies cannot drop below zero, and if they reach twenty, that person wins. If they roll a 2, they get to roll again and multiply that roll by two and add it to their point tally.

Rollie poll-E 2.0

To win, gain 5 points. You gain a point when you correctly answer a question faster than your opponent(s). Choose someone to roll each round, and have them roll the two dice. Once the dice have settled, every player starts solving the math problem. If the dice are both even, devide the greater roll by the smaller one. If the dice are both odd, multiply them. If the dice are odd and even, add them together. Once you figure out the answer, say it aloud, and if you are the first to solve the problem, you get a point. Decimal points are allowed for answers. If the roll has a 1 then subtract 1 from the other roll

(Special thanks to Jocelyn for thinking of the names)

So, as common with scimatics projects, we all were supposed to make a mind map that’s outlines what we already know and what questions we have.

Project Start Mindmap

Now, in this project, the milestones were not a linear process, but in a slightly erratic way, with the milestones not coming in numerical order. So, for the sake of this post, I will tell you about the events of this project in chronological order.

After these first assignments, me and my partner started brainstorming Ideas for our game. Our first milestone was milestone four (confusing). For this project, everybody was given a partner, and together you and your partner would make a game that uses exponents as a central mechanic. So, eventually, me and Aliciah decided to make a game about viruses. Our idea was quite similar to pandemic: contagion, which is a game were each player is a virus trying to exterminate humanity. Our first draft of our rules are here.

Throughout the next week, we updated our game rules and did some exponent practice, and eventually landed on this set of rules:

After making these final game rules, it was time to make our game board and pieces.

Final Game Board!

And, of course, there were curricular competencies for this project, which are listed below.

Applying and innovating: Contribute to care for self, others, community, and world through personal or collaborative approaches.

All class time is used efficiently for learning without distractions. All group members contribute equally.

I used my class time well, and I think that is reflected in the quality of my work. My partner and I shared equal part in the workload for this project.

Reasoning and Analyzing: Use logic and patterns to solve puzzles and play games

A clear and simple points system and win conditions for the game are carefully designed.

Points system is clearly represented by physical game pieces, and finding out who wins a game is easy and concise.

Communicating and Representing: Represent mathematical ideas in concrete, pictorial, and symbolic forms

A set of clear, complete, interesting and personalized instructions are created for how each player takes their turn. Examples are included. The game design uses at least 4 different exponent laws and using these laws is integrated into each player’s turn.

Our game features game rules completely written from scratch, with our own ideas and examples of gameplay and game pieces. There are over four exponent laws included in our rules.

And that concludes my blog post for today! Thanks for reading this far, and if you want to check out my partner Alicah’s blog, click here.

See you in the next post, bye.

Atoms

As you can probably tell from the title, this project was one about atoms (and molecules, Kenetic energy, etc…). We spent about three weeks learning, coding and thinking to answer the driving question for this project: how can the behaviour of matter be explained by the Kinetic Molecular theory and the Atomic theory? So, without further ado, here is the post.

We started this project with a mind map and an experiment/magic trick. We wrote the mind map about what we already knew about matter, and then all of our questions about it.

Project start mind map

For the demonstration of atomic and molecular theory, the teacher performed a trick using a sealed bottle filled with water and an eyedropper.

The trick works by utilizing pressure. When the bottle is not squeezed, it looks like this:

Eyedropper at the top

But when the bottle is squeezed, the pressure increases, forcing the eyedropper down, and if you are subtle, it looks as if you magically made the eyedropper go down.

Squeezed bottle with the eyedropper down

One really cool activity was called the gemstone identification challenge. The whole class partnered up to measure the volume, weight, and then calculate the density of a few stones. The class average density was 3.74 grams per millemeter, and the closest density to that was that of colourless topaz, so we confirmed that the stones were colourless topaz.

Gemstone ID sheet

For milestone 2, we created accurate models for our coded project. In order to make our simulations or games follow this competency: Several different atoms/molecules, different states of matter, and particle motion are represented in the finished product. A historical model of the atom is chosen and implemented, we created some sort of model and text.

In order to create realistic and functioning models of atoms, molecules, and in my case quarks, I worked on three slides of information and graphics. It took three other versions to create to the one shown below.

The next week was mostly spent learning more about matter and coding or refining our scratch projects. Then we did milestone four, which was a coding plan for the rest of the project. This was my milestone four coding plan:

Features:
Press space to show Bohr models
Press M to mute music
Press N to unmute music
Press Q to create more clones
Press 1-3 to change molecule type
Gravity that can be turned on and off
Click the reset button to reset the simulation
Use the temperature slider to change how fast the particles move.
Setting the temperature to zero will stop the particles from moving, other than gravity acting on them.
You can create different states of matter by adjusting the temperature and gravity.
you can adjust how much gravity there is.
You can move between subatomic particle models, Bohr models, and no models by pressing space bar twice This kinetic molecular theory is included in the simulation when the particles move. They follow the Kinetic molecular theory.

After creating a plan, I continued coding my scratch project until it was completely done and polished. If you want to check out my simulator, click here. After all was said and done, I created a summative mind map of the project, which helped round of the end of the project.

As with all projects, there were curricular competencies which you can see below:

Questioning and Predicting: Demonstrate a sustained curiosity about a scientific topic or problem of personal interest.

All class time is used efficiently for learning without distractions. I used all my class time efficiently, and I am very proud of my final product.

Scientific Communication: communicate ideas, findings, and solutions to problems using scientific language, representations, and digital technologies.

Several different atoms/ molecules, different states of matter, and particle motion are represented in the finished product. A historical model of the atom is chosen and implemented. I have three different molecule designs: H2O (water), carbon dioxide (CO2), and ozone (O3). I also have three Bohr models of the elements: carbon, hydrogen, and oxygen, And finally two subatomic models of protons and neutrons.

Reasoning and Analyzing: Use logic and patterns (including coding) to solve puzzles and play games.

An interactive Scratch coded matter simulator or game is created with logical conditions and functional user controls. I created a simulator with four variables that the player/user can change, and extra aesthetic changes as well. The user can change limits all the variables, and the layout is logical and easy to use.

Thanks for reading my post! I had a great time doing this project, and i am sure to do more, so stay tuned .Even though I have featured it already, just in case, here is the link to my scratch matter simulator. Thanks to my friend Noah for all the coding help and feedback. If you want to check out his blog, click here. See you in the next post!

Laser laws final post

Hello, and welcome to anotherblog post. In this post I am going to show all I have learned throughout the laser laws project. First, I’ll start with the driving question: how can I test Pythagorean theorem and the law of reflection. There are many ways to test this, but first we had to build our knowledge on the subject by completing worksheets and doing cool science experiments. For example, at the start of the project we played laser tag, were there are two teams and they both try to shoot the other team’s target with their laser, while protecting their own. There was not to much to be learned from this activity, but it was a fun intro to the law of reflection. After that we did a project start mind map:

Project start mind map

And along the way, I added to the question section, and also answered them all in another mind map at the end of the project:

While mind maps are all fun and good, though, we still haven’t actually tested the law of reflection or Pythagorean theorem. We did a small workbook to get up to speed, and then did a really cool experiment about the wave model of light. Here is the experiment:

in the waves lab, I learned a lot about the nature of light, and how there are multiple models that can be used to define it. We were then split into groups, then did an experiment on Pythagorean theorem. In My groups’s experiment, we tested to see if you can use Pythagorean theorem to get the values of the two legs with only the hypotenuse. The answer was no, but if you know that the legs are the same you can do it.

This is the expirement

In my second milestone, we did a khan academy test to check our understanding. Our third milestone was yet another experiment, this time testing if the law of reflection can be used to make shapes.

After this, we started on milestone four, the design for our laser triangle. This design may or may not be used as the final design, but it is a crucial step nonetheless. There were three revisions of this, but here is the final one:

Final experiment

Then, it was time for the final design. The groups started to set up the mirrors, prepare the laser circuits, and do all-around finishing touches.

Then all the groups set up their projects near the smoke machine, then we all got really cool views of our work coming together.

This is the final laser display!

I overall learned a ton from this project, from how to measure est sides of a triangle to the different models of light

And, finally, the curricular competencies:

The first of three, questioning and predicting, is about ‘‘Demonstrating a sustained intellectual curiosity about a scientific topic or problem of personal interest’’ I think that I did this quite well, as I was on task and very interested in the class.

In the second, Questioning and predicting, you must ‘‘Demonstrate a sustained intellectual curiosity about a scientific topic or problem of personal interest’’, and I did well in this, because i had so many questions about the law of reflection and Pythagorean theorem. Luckily, google search, textbooks, and class resources exist.

The last but not least competency is applying and innovating: cooperatively design projects. I believe I did this well because our group got along well and our final product checked all boxes

And, the answer to the driving question: out of the many ways you could test the law of reflection, by far the simplest is to just grab a mirror and shine a laser on it in a dark room, and take a picture and measure the angles in it. To test the Pythagorean theorem, you could draw right triangles with random side lengths, then use Pythagorean theorem to solve for the missing edge. Then, check your answer using a ruler or, the measure app.